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On the behaviour of the laminar boundary-layer equations 
of mixed convection near a point of zero skin friction 
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The boundary-layer equations of mixed convection are examined in the vicinity of 
separation. The correlation between the uniform wall temperature case and that of 
compressible boundary layer flow is outlined. Goldstein-Stewartson-Buckmaster 
theory is thus appropriate and associated indeterminacies in the theory are evaluated 
from a numerical integration. The case of uniform heat flux a t  the wall is then examined 
theoretically. Significantly it is concluded that the original Goldstein-Stewartson 
theory is sufficient to describe the structure of the singularity a t  separation in this 
case. Indeterminacies associated with the theory are determined via a reconciliation 
between analytical and numerical representation of skin friction and heat transfer 
coefficients near separation. 

1. Introduction 
The foundations for the appreciation of the behaviour of the laminar incompressible 

boundary-layer equations a t  a point x, of vanishing skin friction were laid down in the 
classic paper of Goldstein (1930). It was not until Goldstein (1948), however, that a 
level of accord between analysis and numerical integration of the governing momentum 
equation was demonstrated. This was achieved by developing the tentative analysis 
of 1930 on the assumption that the first compatibility condition for the absence of 
singularities was satisfied. As a result theoretical and numerical evidence of skin 
friction behaviour as (x, - z)i was reconciled. Anomalies in the analysis associated with 
the requirement of algebraic behaviour at  large 7 for coefficient functions in the 
Goldstein expansion were settled by Stewartson (1958). Here 7 = y’/2i(x, - x)i, 
where y‘ is a dimensionless distance measured normal to the wall. Further work by 
Terrill(l960) confirmed the validity of the Stewartson modifications and consequently 
the structure about the singularity in the incompressible case is regarded as fully 
understood. 

The structure about the singularity in flows governed by the coupled boundary- 
layer equations of momentum and energy has up to now proved less tractable. 
Discussion of two relevant circumstances have appeared in the literature, namely 
separation in compressible boundary layer flow and separation in mixed convection 
flow. The former case was first examined from a theoretical standpoint by Stewartson 
(1962). Following an analysis closely patterned on his earlier work on the incompressible 
case he was led to the conclusion that a general compressible laminar boundary layer 
can develop a singularity at a point of zero skin friction only if the heat transfer at  that 
point is also zero. At variance with this conclusion was subsequent unpublished 
numerical evidence of singular behaviour a t  separation (private communication from 
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P. G. Williams, University College London). This anomaly was ultimately resolved by 
Buckmaster ( 1970) who demonstrated a complicated but self-consistent expansion 
involving new logarithmic terms and their products which generated a skin friction 
representation vanishing as (x, - x)4 In (xs - x). More recently Davies & Walker (1977) 
have undertaken a thorough numerical investigation of compressible boundary layer 
separation. Despite some slight reservations over the accuracy of their results in the 
immediate vicinity of separation it does appear that the Goldstein-Stewartson- 
Buckmaster theory satisfactorily accounts for the skin friction behaviour for both hot 
and cold walls. 

Separation in mixed convection, on the other hand, was first discussed by Merkin 
(1969), who examined the effect of opposing buoyancy forces on the boundary layer 
flow over a uniform temperature semi-infinite vertical flat plate in a uniform stream. 
His numerical evidence was indicative of a square root singularity a t  separation. 
Moreover an analytic formulation, appropriate at separation in this context, yields 
equations which almost exactly coincide with those first addressed by Stewartson 
(1962). Thus Merkin’s results in fact provided the first reported contradiction of 
Stewartson’s original conjecture. Naturally these results should therefore be corn- 
patible with the Buckmaster theory and its associated expansions. By amending the 
uniform temperature constraint to that of a uniform heat flux at  the plate Wilks (1974) 
sought to provide additional information concerning circumstances involving irregu- 
larities a t  a point of zero skin friction. Preliminary examination of the results suggested, 
surprisingly, the presence of a three fifths singularity at  separation. Subsequent corn- 
putations (Davies & Walker) have indicated the sensitivity of the numerical scheme 
to the form of modelling of the uniform heat flux boundary condition. When this is 
accounted for the familiar square root behaviour is recovered. No theoretical study of 
these latter circumstances has as yet been reported. 

From the preceding discussion it may be conjectured that recourse to Buckmaster 
forms of expansion is in wme sense a property of the coupling of the governing 
momentum and energy equations. Is i t  inevitable that such a complicated structure 
will be required to account for irregularities encountered in numerical integration to 
separation in such circumstances? In the work that follows we suggest that this need 
not necessarily be the case. We are led to this conclusion on the basis of an analytic 
examination about the separation occurring in the uniform heat flux problem. 
Significantly, it is indicated tha t  for this problem a Goldstein-Stewartson expansion 
will apparently suffice so long as it is again assumed, as in the incompressible case, that 
the first condition for the absence of singularities is satisfied. No complications 
involving non-terminating sequences of coefficient functions are encountered and 
progress may hence be made towards more explicit representations of the higher order 
coefficient functions. 

In  order to substantiate the above conclusion a further numerical solution of the 
mixed convection separation problems was undertaken, employing an alternative 
method of solution to that used previously. A distinction in the nature of the singu- 
larities in the two problems of uniform temperature and uniform heat flux was im- 
mediately apparent. The numerical evidence clearly indicated that the singularity 
associated with the uniform heat flux integration was of a less complicated nature 
than that occurring in the constant temperature integration. This is indeed only to be 
expected if the theoretical predictions are valid. An indeterminacy appearing in the 



Laminar boundary-layer equations of mixed convection 379 

theoretical representations of skin friction and heat transfer coefficients may be 
estimated either through a comparison with the numerical values of skin friction 
coefficient or through a comparison with the numerical values of heat transfer coeffi- 
cient. The level of agreement between the two independent estimates of this indetermi- 
nacy is taken as confirmation that the structure at separation for the constant heat 
flux problem has been satisfactorily accounted for by the Goldstein-Stewartson 
expansions. 

2. The equations of mixed convection 
The flows envisaged in this paper involve the flow of a uniform stream U along a 

semi-infinite flat plate extending vertically downwards with its leading edge horizontal. 
Heat is supplied to the flow by diffusion and convection from the plate either as a 
result of (a )  a uniform temperature TI at the plate or ( b )  a uniform heat flux q from the 
surface. This heating, relative to the surrounding ambient temperature To, generates 
buoyancy forces which oppose the free stream and ultimately lead to separation of the 
boundary layer formed from the leading edge. The governing equations, incorporating 
the assumptions that changes in density are significant only in producing buoyancy 
forces and that viscous dissipation may be neglected, are 

Here u and v are velocity components associated with increasing x and y respectively, 
where x measures distance along the plate from the leading edge x = 0 and y is 
measured normally outwards from the plate; T is the temperature of the fluid and g 
the acceleration due to gravity, /3 the coefficient of thermal expansion, K the thermo- 
metric conductivity and v the kinematic viscosity are all taken as constant. Solution 
of (1)-(3) is required subject to boundary conditions 

I u = v = O  on y = O ,  

1 u + U ,  T + T o  as y + m ,  

u = U ,  T = T o  a t  x = O ;  

(a) T = TI 

(b)  - = - 

(4) 

where k is thermal conductivity. 
Merkin (1969) and Wilks (1 974) have demonstrated the relevance of characterizing 

non-dimensional coordinates in formulating each of the problems under discussion, 
namely 

( 5 )  
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Each co-ordinate reflects the local relative importance of viscous and buoyancy 
forces. Near the leading edge the dominant feature of the flows, is the viscous retarda- 
tion of the free stream U .  Accordingly, transformations which render equations (1)-(3) 
amenable to numerical integration are 

where 5 = y( U / 2 v x ) t .  For brevity the associated equations and boundary conditions 
are omitted - they are readily available in the references cited. The transformations 
are quoted, however, to clarify certain correlations which are later required in assessing 
compatibility between numerical results and theory. 

To examine the behaviour near separation, equations (1)-(3) are first non-dimen- 
sionalized and then transformed in a manner analogous to that of Goldstein (1  948). 
Taking 

(xs - x )  y’=- RtY +’=- RJII. u , RBv x’ = - 
1 ’  1 ’  1u ’ u’=l;i’ =- U 

together with 
T-To T - To. Rt 

(a)  e‘ = - (b)  e‘ = 
Tl -To’ - q / k . l  ’ 

leads to the non-dimensional equations 

where Pr is the Prandtl number V/K, R is the Reynolds number U l / v  and I is inter- 
preted as follows: 

for (a)  

for ( b )  

The transformations appropriate to an initial profile displaying a double zero at  the 
origin are 

1 = law and the minus sign persists in equation (io), 

I = -Zw and the plus sign persists in equation (10). 
2 
53 

The resulting equations are 



Laminar boundary-layer equations of mixed convection 381 

where once again - and + of (13) refers to (a)  and (b)  respectively. I n  keeping with 
previous work on this topic we shall restrict ourselves to the case Pr = 1. Boundary 
conditions play an important role in subsequent developments and their discussion is 
delayed to later paragraphs. 

3. The constant-temperature case (a) 
Although Stewartson’s resolution of the behaviour a t  incompressible separation 

invalidated Goldstein’s original assumption of a power series representation of the 
separation velocity profile, the non-analyticity is only introduced in higher order 
terms. Accordingly it is still helpful, as a preliminary boundary condition, to require 
that the solution of the boundary layer equations evolve in some sense towards the 
separation profiles of velocity and temperature expressed as series, and to deal with 
anomalies as and when they arise. I n  non-dimensional terms this implies profiles 
satisfying (~u’/ay’),,=, = 0 and (8’),=, = 6 ,  = 1 a t  z’ = 0, namely 

u’ = a2y’2+a3y’3+w,y’4+ ..., (15) 

8’ = l+b,y’+bzy’2+b3~’3+... . (16) 

Note that the first condition for the absence of a singularity in the solution of (10) a t  
x’ = 0 is then 

2az-1 = 0. (17) 

In  view of (15) and (16) it is natural, as a first attempt, to seek series solutions of (13) 
and (14) in integral powers of $, 

and require coefficient functions f,, 8, to behave algebraically a t  large 7, i.e. expect that 

where, from now on, the prime will imply cZ/dy. Remaining boundary conditions 
reflecting impermeability, no slip and uniform temperature a t  the plate are simply 

f n (0 )  = fA(0) = 0; 8,(0) = I; On(0)  = 0 (n 2 I). (21) 

The equ‘ations for f,, 8, now coincide with those of Stewartson (1962) for hisf,, go 
except that 1 +go is replaced by 8, in the momentum equation. 

The equivalence with a particular case of Stewartson’s work is complete, as far as 
further developments are concerned, when it is recognized that 8, = 1 is the only 
acceptable solution of the energy equation under (21). The solution for fo with a double 
zero a t  the origin and satisfying the Jirst compwtibility condition (17) is then fo = i73. 
The discussion for higher order terms must now exactly parallel that of Buckmaster 
(1970). The arguments demonstrate the coefficient functions (18) and (19) as incom- 
plete and indicate the need to introduce coefficient functions f n ( $ ,  7)  and On($, 7) (n 2 1 )  
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whose ( dependence is logarithmic. The development of the representation off,, 0, is 
lengthy and somewhat involved and the reader is referred to the original papers for 
details. Here we shall simply examine the possibility of a satisfactory reconciliation 
between the numerical solution and the representations outlined in those papers. In 
particular we examine the implications with regards to the basic flow parameters, 
namely the skin friction and heat transfer coefficients. Near separation, for skin- 
friction coefficient correlation 

1 -  
7w = @$ (f&o = W f , , ) , = O  

= 2*E2( 2a10 In ( + 2a,, + 2aI2 In I In f;l + 2aI3 In I In 51 /In ( + . . . ) 
(22) 

and for heat transfer correlation 

- 1  
23 

-- - {b, -f;&(O) b,(2a1, In f ;  + 2a,, + 2a121n jln ( I  + 2a131n Iln (//In (+ . . .)> ( 2 3 )  

where 
- 2 d (  - a) ! b, , a12 = (1-2In2)a1,, 

a10 = 64($!)3 

- 64(g!)3a;2 - 2h74 
KH(0) = - (see appendix). 

= 2773( - &) b, ’ 8($!)3 
(24) 

The formulation implies ( = (& - @, where & denotes the separation value of E. 
Knowledge of the left-hand sides of ( 2 2 )  and ( 2 3 )  is available from the numerical 
integration. Of the two indeterminacies b,, all the former may be specifically evaluated 
from the numerical solution a t  separation. On the other hand a,, is chosen to reconcile 
(22) and (23) over a range off;. 

4. The constant heat flux case (b) 
In  non-dimensional terms the significant boundary condition for this case is 

(a8’/ay‘)+, = b, = 1.  Assuming, in the first instance, the power seriesrepresentation of 
separation profiles, (15) remains appropriate whilst the ,counterpart of (16) reads 

0’ = b0+y’+b2y’2+b ,y ’3+ . . .  . (25) 

Moreover the first compatibility condition for the absence of a singularity of (10) at 
x’ = 0 now takes the slightly more general form 

(26) 2a2 + b, = 0. 

To reflect the implications of (16) and (25), and yet allow for the possible arising of 
anomalies due to their assumed form, we follow Stewartson (1962) and seek solutions 
of (13) and (14) as 

m 

f(f; ,y) = 2 fn(r)  En + extra termsinvolving In f;, 

O(f;, y) = B,(y) f;” + extra terms involving In f;. 

(27) 

(28) 

n=O 

(D 

n=O 
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Appropriate boundary conditions are 

(29 )  fA 
q-f“ 7- f,(O) =fA(O) = 0, lim - = 24na,,, 

8, 
7-m 7” 

(n = 0,1,2,  ...), 

& ( O )  = 23, OA(0) = 0 for n f 1, lim - = 23b, (n = 0 , 1 , 2 ,  ...) (N.B. b, = I), 

(30 )  

unless it transpires that additional coefficient functions need to be introduced. Should 
this be the case then conditions as y - + m  are replaced by the requirement that 
coefficient function dependence on 7 should be algebraic for large 7. 

Equations for fa, 8, are 
f::-3fofo”+2f;2+8, = 0, (31 )  

(32 )  8; - 3f*8;, = 0. 

The solution of (32 )  satisfying the boundary conditions is 8, = b,. The solution for f,, 
having a double zero at  the origin and satisfying the first compatibility condition is 

Experience of the numerical solution suggests that a, may be expected to be positive. 
Proceeding with the expansions ( 2 7 )  and (28 )  on the basis of (33 )  gives equations 

for fl, 8, as 
f’r-a,r3f;+5azrfi-8cc,rfl = -8,, (34 )  

(35) ol; - a,y36; + a2r2f9, = 0. 

Equation (36 )  has as complementary functions 7, and a function displaying exponential 
growth a t  large 7. The required solution is therefore 

8, = 237. (36 )  

With this solution for 8, the solution of (34 )  displaying a double zero at the origin and 
algebraic behavionr at  large 7 is 

(37) 
fi = a,*v2- 24- T4 

24’ 

where m: is the basic indeterminacy of the ensuing analysis. It is the counterpart of 
a,, of 3 3. The additional subscript is not required here as the developing solution no 
longer displays the inconsistencies that Buckmaster had to account for. The asterisk 
is used to highlight this point. The significant stage a t  which distinction can be made 
between the two cases occurs when examining acceptable solution for f,, 8,. Their 
governing equations are 

f!. - a2y3f; + 6a272f; - 10a,r,f, = - 8, - $a:. 23. y4 - 4a,*’q2, 

8; - ~ ~ ~ 7 3 8 ;  + 2a2728, = 23472 .  

(38)  

(39 )  

Note that, with the transformation z = ( 2 a 2 ) i 7 ,  the left-hand side operators off,, 8, 
may be reduced to the forms dealt with in the appendix. Thus the complementary 
functions of ( 3 9 )  each display exponential behaviour a t  large 7. They can therefore 
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only appear in the solution as the combination [(constant) K,]. However, since Kk 
remains finite at 7 = 0, the boundary condition 6;(0) = 0 leads to the conclusion that 
the constant multiplier must be identically zero. Accordingly, in contradistinction to 
the constant temperature case, K ,  daes not appear in the solution for 62, which here is 
simply 

24aT 
0 --. 

a2 
2 -  

The integral restraint on the right-hand side of (38) is now satisfied identically and an 
acceptable solution for f2 is 

Although a: is apparently arbitrary a t  this stage, it has the prescribed role of 
ensuring the absence of exponentially large terms in f,. If a precise value of at  is to be 
ascertained we must proceed to examine 

2 k p 7  
6: - a2y36; + 3a2y20, = 3.24. a:y2 - - , (43) 

u2 

Again G,, H3 each display exponential behaviour a t  large 7 and only their appearance 
as the combination [(constant) K,] can be countenanced. Once more the boundary 
condition 6;(0) = 0,  when applied to the general solution, requires that the constant 
be identically zero. The solution for 8, is 

As in the Goldstein analysis the solution for f3 has to allow for two complementary 
functions g,, h,, each of which displays exponential behaviour a t  large 7 (see appendix). 
However a particular combination (in Terrill’s notation k3) may be shown to behave 
algebraically. Imposing the condition that g,, h, appear only in such combination in 

(45) 
thus prescribes 

In  principle the solution may be pursued further and a$ obtained in like manner on 
examination of f4. Unfortunately the presence of g,, h, in (45) severely complicates 
subsequent developments. The possible occurrence of inconsistencies may, however, 
be closely monitored by due consideration of integral restraints associated with 
termination of complementary functions. For the energy equation these occur at  f4m 

and 64m+1 levels in the expansions and for the momentum equation a t  54m+l and 64;4m+a 

levels. Accordingly the first likely source of complication would arise a t  the f5  level 
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in the energy equation. A contribution from the complementary function a t  the t4 
level which satisfies the zero derivative boundary condition at  the wall together with 
algebraic behaviour at large 7 may be needed to allow satisfaction of the integral 
restraint a t  the g5 level. Clarification of this point would however be extremely 
arduous and is beyond the scope of this present paper. We proceed therefore to 
examine the level of agreement between the solutions as far as f 2 ,  0,, and the numerical 
solution. Again we shall concentrate on the basic flow parameters of skin friction and 
heat transfer coefficients. Near separation, for skin friction coefficient correlation, we 
require 

and for heat transfer coefficient correlation 

+ ...) 
a2 a2 

a 
(48) 

--(b -54 2ta* [,tE,-B] 55 t +T[,tts-D] 2t .a;  55 +...). 
- 2* o + -  

a2 

The left-hand sides of (47) and (48) are known from the numerical integration. The 
temperature at the wall at separation b, is specifically evaluated by the numerical 
integration whereas a? is chosen to reconcile the analytic and the numerical solution 
near separation. Note that (47) and (48) provide two independent means of estimating 
a;. 

5. Numerical procedure 
The equations to be solved (Merkin 1969; Wilks 1974) are 

where for case (a) c = g, h = - 2, p = 0, and case (b)  
boundary conditions 

= E, h = 5@?, p = 1 ;  subject to 

F L h l  I01 
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These equations have been solved numerically using a method devised by Keller 
(Keller & Cebeci 1971; Keller 1978). This method has advantages over the method 
used previously (Terrill 1960) in that the solution a t  6' = 0 is readily calculated, the 
method is unconditionally stable and principally that the method allows us  to employ 
Richardson's extrapolation enabling us to obtain high accuracy using crude nets. 

The equations are firstly recast into linear form by introducing the variables u, v and 
w defined as 

The equations now read 

and boundary conditions lead to 

a )  8 = 1  
f =  0, u =  0, jjb) w = 1) at 7' 

u = l ,  8 = 0  a t  q = m .  J 
To discretize the equations we use a net which is non-uniform in 
defined as 

but uniform in q, 

(53) I 6; = 0, EA = [A-.l+kn (n = 1,2, ...), 

c,, = 0, <j = &-l+h (j = 1,2,  ..., N ) ,  

where the outer boundary cN has been set a t  7.2. If gj" denotes the value of any variable 
g at  (EA, qj), then variables and derivatives of equations (51) at (€&, ~ ~ - 4 )  are replaced 

g"4 - 
3 -4 - *(gi" + gi"-1+ gi"-'+ g?1?), 

by 

where tA-4 = 

and we therefore use 
+ $kn and qj-4 = 7j-1 + ih .  Equations (50) are centred a t  ([k, qj-t) 

The boundary conditions ( 5 2 )  are then 

If we suppose we have solved the problem up to tm.-l, then we have 5 N  equations plus 5 
boundary conditions for the 5N + 5 unknowns (f 7,  uj"', v7, 8?, wj") j = 0,1 ,  . . . , N .  These 
are nonlinear algebraic equations which are solved using Newton's iteration, the values 
of the variables a t  ck-l being using as an initial iterate. At fl' = 0 the equations (51) have 
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only 7 derivatives and are discretized using ( 5 4 ) .  The resulting algebraic equations are 
again solved by Newton's iteration. 

As we approach separation (i.e. v = 0 ) ,  the value of k ,  is determined from the two 
most recent values of v a t  7 = 0, namely vt-l  and ~ 2 ~ ~ .  If we assume that vt is approxi- 
mately proportional to (E - EJ4 as we approach separation (where 6; is the position of 
separation) then we can estimate 6; from vt-l  and v:-~, and after some algebra w0 find 

Hence by choosing k, to  be &(ti - i&) as given by this estimate, one is able to approach 
separation by continuously halving the distance to separation. 

Each cell of the net ( 5 3 )  is divided into 2m equal subintervals in the 5 direction and 
m subintervals in 7 producing a finer net having cell dimensions k J 2 m  and h / m  where 
m is an integer. The program was run for values of m = 2 , 3  and 4 ,  having set N = 10, 
and Richardson's extrapolation is employed in order to obtain results of higher 
accuracy. Since the truncation error is a power series in the square of k / 2 m  and h / m  
(where k = max k,) the final result will have truncation error O(h6 + P). It should be 

appreciated that the calculated separation point 6; will have error O( ( h / 2 m ) 2  + ( k / m ) 2 ) ,  
and again Richardson's extrapolation is used to find a more accurate value. The 
intermediate values 6; will similarly vary and are treated in an analogous manner. The 
values of 5; given by Merkin (1969)  and Wilks (1974)  contain an error O(h2) and differ 
from our results, which being O(h6) are substantially more accurate. 

In  order to assess accuracy a further run was made setting m = 1 .  The results for 
m = 1 , 2  and 3 were used to obtain a further set of results O(h6+ k6)which were used to 
test the accuracy of the original set. 

n 

6.  Numerical results 
The numerical results obtained are accurate to approximately 6 decimal places 

except for the temperature gradient win case (a )  within 10-4 of separation (at distances 
of to to separation the accuracy in w is about 3 or 4 decimal places). Because 
of the exponential growth in the erior of w as separation is approached in case (a)  the 
program failed to converge a t  distances less than 5 x 10-6 to separation. However in 
case ( b )  no such difficulty is encountered and in fact separation was approached to 
within 10-8.t 

Tables 1 and 2 show the values of the flow parameter for values of 5' up to separation 
for cases (a)  and ( b )  respectively, where 7 ,  = (v), , , /J(25') is the skin friction coefficient 
(column 2 )  and = - 1 / ( ( 0 ) , = 0 4 ( 2 ( ) )  are the heat transfer 
coefficients for cases (a)  and ( b )  respectively (column 4). The separation points 5: are 
estimated as the point where an extrapolation of 7;. becomes zero and are found to be 

= - ( W ) ~ = ~ / J ( ~ E )  and 

( a )  ES = 0.192217, (b )  Es  = 0.141 576 99, 

and are accurate to the number of decimal places quoted as are all results in this paper. 
At this point we find 

(a)  8 + 0-423,  ( b )  8 + 0.952068.  

t Therc would bc no difficulty i n  getting closer. 
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- 
5 

0.040 000 
0.063 220 
0.085 005 
0.104 984 
0.122 953 
0.138726 
0.152 162 
0.163205 
0.171 917 
0.178490 
0.183 227 
0.186495 
0.188662 
0.190 053 
0.190920 
0.191 450 
0.191 768 
0.191 956 
0.192 067 
0.192 131 
0.192 168 
0.192 189 
0.192 201 
0.192 208 
0.192 212 

' W  

1.422 990 
1.015 370 
0.776 127 
0.611 073 
0.486 878 
0.388 808 
0.309 331 
0.244219 
0.190 889 
0.147 573 
0.112860 
0.085 472 
0.064 194 
0.047 888 
0.035 533 
0.026 255 
0.019 337 
0,014 206 
0.010416 
0.007 626 
0.005 577 
0.004 074 
0.002 974 
0.002 166 
0.001 577 

7, (series) 

0.484 71 
0.439 69 
0.394 84 
0.350 67 
0.307 48 
0.265 68 
0.225 83 
0.188 59 
0.154 61 
0.12446 
0.098 48 
0.076 74 
0,059 01 
0.044 89 
0.033 84 
0.025 32 
0.018 84 
0.01395 
0.010 29 
0.007 56 
0.005 54 
0.004 04 
0.002 94 
0.002 18 
0.001 60 

TABLE 1 

Q 
1.601 885 
1.243 449 
1.044 480 
0.913 782 
0.819 449 
0.747 395 
0.690 355 
0.644 185 
0.606 334 
0.575 115 
0.549 320 
0.528012 
0,510 424 
0.495 910 
0.483 929 
0.474 026 
0.465 829 
0.459 030 
0.453 380 
0.448 670 
0.444 137 
0.441 450 
0.438 698 
0.436 562 
0.434 765 

Q (series) 

0.680 8 
0.666 7 
0.652 2 
0.637 3 
0.622 0 
0,606 5 
0.590 6 
0.574 7 
0.559 0 
0.543 7 
0.529 1 
0.515 6 
0.503 2 
0.492 0 
0.482 1 
0.473 4 
0.465 9 
0.459 3 
0.453 7 
0.448 9 
0.444 8 
0.441 3 
0.438 3 
0.436 0 
0.433 9 

The flow parameters rw and 8 for case (a )  were matched to the series solution at  
separation (equations ( 2 2 )  and ( 2 3 ) )  to determine the parameters a,, and b,. For any 
given one may use ( 2 2 )  and ( 2 3 )  to obtain these parameters and if the series solution 
and the numerical solution are consistent then the values obtained for a,, and b, 
should not vary with E .  This is indeed the case, thus the numerical results confirm the 
validity of the series obtained. Choosing the parameters such that ( 2 2 )  has error 
0((Es - E N  and ( 2 3 )  WEs - 511) gave 

a,, = 0.436, b, = -0.598. 

Using these values gave series solution values for rw and 8 as shown in columns (3) and 
( 5 )  of table 1. Notice that b, is negative, consistent with temperature decrease away 
from the wall. Nevertheless very satisfactory matching is achieved in the context of 
the Buckmaster theory despite the implications that this has on the skin friction 
estimates extremely close to separation. Similar paradoxical conclusions were reached 
by Davies & Walker for hot walls. Moreover, if the flow envisaged is converted to its 
counterpart of a cold wall in a heated stream, exactly the same equations and results 
obtain.' Note that in this latter case b, < 0 is not inconsistent with temperature 
increase away from the wall since the temperature decreases or increases in accordance 
with the positive or negative nature of (T, - To). 

In  a similar fashion the parameters a: and b, of equations (47) and (48) for case (b )  
can be determined using r, and 0 in table 2 .  It was found that b, could be assessed very 
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l 
0.040 000 00 
0.068 208 28 
0.088 91891 
0.105 005 96 
0.1 17 166 08 
0.125 928 94 
0.131 917 32 
0.135 806 52 
0.138 222 88 
0.139 670 67 
0-140 513 40 
0.140 992 66 
0.141 260 08 
0.141 407 01 
0.141 486 72 
0.141 529 45 
0.141 552 13 
0.141 564 07 
0.141 570 32 
0.141 573 56 
0-141 575 23 
0.141 576 10 
0.141 576 54 
0.141 576 76 
0.141 576 87 
0-141 576 93 
0.141 576 96 
0.141 576 98 
0.141 576 98 
0.141 57699 

7, 

1609 968 
1.003 261 
0.746 687 
0.568 585 
0.433 492 
0.328 306 
0.246 379 
0.183 237 
0.135 210 
0.099 141 
0.072 307 
0.052 505 
0.037 988 
0.027 402 
0.019711 
0.014 144 
0,010 130 
0.007 242 
0.005 170 
0.003 685 
0.002 624 
0.001 865 
0*001 327 
0.000 940 
0.000 672 
0.000 472 
0.000 331 
0.000 241 
0.000 166 
0.000 123 

T ,  (series) 

0.876 31 1 
0.727 287 
0.602 242 
0.490215 
0.390 900 
0.305 360 
0.234 141 
0.176 758 
0.131 799 
0.097 337 
0-071 353 
0.051 999 
0.037 720 
0.027 258 
0.019 632 
0.014 102 
0.010 107 
0.007 229 
0.005 183 
0.003 081 
0.002 620 
0.001 863 
0,001 324 
0.000 939 
0.000 667 
0.000 466 
0.000 329 
0.000 239 
0.000 166 
0.000 122 

6 
2.261 140 
1.695 565 
1.452 104 
1.304 720 
1.205 296 
1.135 105 
1.084 599 
1.048016 
1.021 478 
1.002 229 
0.988 274 
0.978 164 
0.970 851 
0.965 566 
0.961 752 
0.959 005 
0.957 030 
0.955 612 
0.954 596 
0.953 870 
0.953 350 
0.952 979 
0.952 716 
0.952 527 
0.952 396 
0-952 299 
0.952 230 
0.952 186 
0.952 149 
0.952 128 

6 (series) 

1.728 940 
1.518 258 
1.377 421 
1.271 732 
1.190 735 
1.128 812 
1.081 966 
1.046 958 
1.021 073 
1.002 082 
0.988 224 
0.978 148 
0.970 845 
0.965 564 
0.961 750 
0-959 002 
0.957 028 
0.955 611 
0.954 595 
0.953 868 
0.953 349 
0.952 978 
0.952 715 
0.952 527 
0.952 394 
0.952 296 
0.952 229 
0.952 185 
0.952 149 
0.952 128 

TABLE 2 

accurately by using (47) to eliminate a: and a; from (48) and considering small values 
of (ls- g). It was found that 

Having determined b,, a: could be assessed either from r, or & a t  each position E. It 
was found that a: was remarkably constant with and gave the same result from both 
rw and &, corroborating the series solution to a high degree of accuracy; a: was deter- 
mined such that the error in (47) and (48) is O(Es - g) and is 

a: = 0.4653 (using 7,), 

b, = - 1*270010. 

a: = 0.4651 (using 0). 
Taking a: to be 0.4652 and b, as given gave series solution values for r, and &, see 
table 2. 

7. Conclusion 
It has been demonstrated that a clear distinction exists between the singularities in 

mixed convection boundary-layer separation associated with the uniform temperature 
and uniform heat flux boundary condition respectively. Thc relatively straightforward 
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asymptotic structure about the singularity occurring in the uniform heat flux case 
demonstrates that Buckmaster expansions are not an inherent feature of the coupling 
of the momentum and energy equations. This same relative straightforwardness 
recommends the uniform heat flux case as the natural one to examine, in the first 
instance, when attempts are made subsequently to embed the analysis evidenced here 
into an investigation of separation in the context of the full Navier-Stokes equations. 

Appendix 
Complementary functions play a significant role in developing consistent series 

solutions. We present here a summary of the complementary functions and their 
properties, associated with the operators arising from the momentum and energy 
equations. 

The homogeneous differential equation whose solutions are relevant to the stream 
functions f, is .. . 

f, - &vn + $(?t + 4) Z"f, - (n + 3) Zf, = 0, 

where the dots indicate differentiation with respect to z. Complementary functions are 
z2, h,(z), g,(z) (see Goldstein 1948); h,(O) = l,g,(O) = 0; h,(O) = 0, g , ( O )  = 1.  When 
n = 4m + 1 the series representation of h,(z) terminates, whilst that of g,(z) terminates 
when n = 4m + 2, for m a positive integer or zero. Otherwise h,(z), g,(z) each display 
exponential behaviour a t  large z. However when n =/= 4m + 1,4m + 2 the combination 

2t (  -%)! ( - # - i n ) !  
kn = h,+ ( -$) ! ( -P-&n) !  Sn 

behaves algebraically for large z and has the value unity a t  the origin. 
In  the development of the temperature function 8, the relevant equation is 

8, - 8238, + inz28, = 0. 
Series solutions are 

where H,(O) = 1, &(O) = 0; Gn(0) = 0, Gn(0) = 1 and M(a,  b;  z )  is Kummer's confluent 
hypergeometric function. The series representation of H,(z) terminates when n = 4m 
whilst that of G,(z) terminates when n = 4m+ 1.  Otherwise H,(z), G,(z) each display 
exponential behaviour a t  large 2. When n 4m, 4m + 1 the combination 

behaves algebraically for large z and has the value unity at  the origin. 
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